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Abstract

Computational creativity has contributed heavily to abstract art
in modern era, allowing artists to create high quality, abstract
two dimension (2D) arts with a high level of controllability
and expressibility. However, even with computational ap-
proaches that have promising result in making concrete 3D art,
computationally addressing abstract 3D art with high-quality
and controllability remains an open question. To fill this gap,
we propose to explore computational creativity in making ab-
stract 3D art by bridging evolution strategies (ES) and 3D
rendering through customizable parameterization of scenes.
We demonstrate that our approach is capable of placing semi-
transparent triangles in 3D scenes that, when viewed from
specified angles, render into films that look like artists’ spec-
ification expressed in natural language. This provides a new
way for the artist to easily express creativity ideas for abstract
3D art. The supplementary material, which contains code,
animation for all figures, and more examples, is anonymously
here: https://anonymous-1ejeaec.github.io/.
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Figure 1: Our proposed method places semi-transparent triangles in three dimension (3D) spaces using Evolution Strategies (Tang,
Tian, and Ha 2022; Hansen 2000; 2006). Leveraging ray-tracing based rendering Mitsuba 3 (Nimier-David et al. 2019;
Jakob et al. 2022), the rendered film at possibly multiple cameras is compared with its corresponding, user-specified text prompt
using distance between their representation embedded by CLIP (Radford et al. 2021). Such distances, aggregate by average, are
used as the fitness in the sense of Evolution Strategies, which optimize the parameters of triangles to achieve better finesses.

Introduction
Through art history, a trend of abstract art has been influential
since the beginning of 20-th century in the course of mod-
ernism (Kuiper 2021) which focuses on abstract elements
instead of traditional photo-realistic forms. Starting from
Cubism art movement (Rewald 2014) and geometric abstrac-
tion (Dabrowski 2004), the focus on abstraction leads to
abstract expressionism (Paul 2004) and minimalist art (Mod-
ern 2018; Bertoni 2002). They collectively have opened a
new approach of painting art where the subjective apprecia-
tion of the object or the feeling could be expressed, and the
once dominant traditional focus on accurate representation is
not the only standard anymore.

Computer art, in the broader sense making art in a compu-
tational way, have also played a heavy role in this course
of abstract art. Early works have brought forward the
concept of artists generating art by designing mathemati-
cally, or more precisely algorithmically (Malkevitchn 2003;
Verostko 1994). The said algorithm, and its properties like its
complexity (Kolmogorov 1965), have became an important
and intrinsic metric of art (Schmidhuber 1997). In this regard,
a large body of pioneer artists including Frieder Nake, Vera



Molár, A. Michael Noll, Manfred Mohr, Leslie Mezei and
Georg Nees have explored designed algorithms to produce ab-
stract art that are composite of simple primitives like lines and
polygons. More recently, modern approaches propose that
artists could, instead of designing the algorithm directly, spec-
ify rules to find an algorithm that in turn produces the artwork.
Doing so becomes feasible thanks to the recent advances in
evolution strategies (ES), for example art generation using ES
has been proposed to produce a wide range of simple (Johans-
son 2008; Alteredqualia 2008) and complex (Fogleman 2016;
Cason 2016; Paauw and Van den Berg 2019; Shahrabi 2020;
Tian and Ha 2022) art forms, where the artists can specify
the rules using text or images as instructions.

While arguably painting has always been one of the most
dominant art forms, arts concerning three dimensional (3D)
objects is an equally important field. For example, Among
3D arts the one with the longest tradition is sculpture (Rogers
2020) and architecture (Gowans et al. 2022) which starts
from classical antiquity and remains pretty relevant today.
Yet modern techniques and industries add new movements
to 3D art, where we also see a similar trend of abstractness
and modernism like the painting arts mentioned above. For
example, the trend of modernism has led to the sculpture to
go beyond the realm of solid, representational form, and the
artists started to produce “nonfunctional, nonrepresentational,
three-dimensional works of art” (Rogers 2020). This particu-
larly includes spatial sculpture (Conroy 1977; Kricke 1976;
Caro 1962) where space becomes the subject of the 3D art-
works, and the viewing angle as well as the relation of ob-
jects comes to be an important part of the art. In the realm
of computational approach to 3D art, early work explores
rule based generation (Broughton, Tan, and Coates 1997;
Coates, Broughton, and Jackson 1999) where the combina-
tion of rules are evaluated by human-in-the-loop (Cook 2007).
Late works focus on parameterization, such parametric 3D
surfaces (Chu 2021). A recent work (Hsiao, Huang, and Chu
2018) produces wire art that looks like predefined sketches
by connecting vortexes using a 3D path finding algorithm.

However, the modern computational approaches to the
abstract 3D art remains an open gap to fill. This is more
prominent given how high-quality and controllable computer
concrete 3D art has been achieved by recent advances. For ex-
ample, it is now possible to generate high-quality 3D volumet-
ric objects using recent generative model like NeRF (Milden-
hall et al. 2021; Martin-Brualla et al. 2021) and text-to-image
model like DALLE (Ramesh et al. 2022). Powerful image
generative models like Imagen (Saharia et al. 2022) and
Parti (Yu et al. 2022) open the door to works such as Dream-
Fields (Jain et al. 2022), DrameFusion (Poole et al. 2022)
and Magic 3D (Lin et al. 2022) where artists can easily
control the generation of height quality 3D object by text
prompt. On the other side, to our best knowledge, still miss-
ing are computational tools to produce high quality abstract
3D art creation that does not not require artists detailing ev-
erything but instead allow artists specifying instructions in
a way that is high level and that human can easily produces
and understand.

To bridge this gap, we propose to combine evolution strate-
gies (ES) and 3D rendering through customized parameteri-

zation of scenes, which is later evaluated by a deep learning
model, to address computational creativity in the abstract 3D
art. In doing so we leverage the recent advances in evolu-
tion algorithm applied to abstract 2D art generation, as well
as ray-tracing rendering, which is vital to the rendering of
physically-sounding transparent objects. Two components
are bridged by immediate mode, a paradigm in computer
graphics where senses are parameterized. Parameterization
could be specified by the artist to customize scenes, allowing
a new way for the artist to express creative ideas at a high
level. We demonstrate that our approach is capable of plac-
ing shapes in 3D scenes that, when viewing from specified
angles, look like artists’ specification expressed in natural
language. This is facilitated by recent advances in deep learn-
ing, namely CLIP that is also used in DALL-E (Ramesh et
al. 2022), that connects text and images domains. With all
these components, the artist can freely express the idea of 3D
abstract art by text, which is a more approachable way and
allows a wider audience to participate in 3D art creativity. A
quick summary of our proposed method and some exemplary
artifacts are shown in Figure 1 and Figure 2.

Related Works
In this section we cover works that are the background of or
related to our proposed methods.

Computational Approach to Abstract Painting Art The
computational approach to abstract and minimalist painting
art has a long history before the era of computing. Early
works discuss mathematical art (Malkevitchn 2003) which es-
tablishes the connection between artworks and mathematical
properties such as symmetry and polygon for paintings, and
octave for music. Since the inception of computers as a new
means for human activity, algorithmic art (Verostko 1994)
has been proposed as a new framing of art, where artworks
are not produced by humans directly but by human designing
a mathematical process, or an algorithm, that produces the
artifact. Furthermore, the properties of the said algorithm
themselves could also be a subject of artistic discussion. One
example is low-complexity art (Schmidhuber 1997) where
the complexity of the said algorithm becomes a measure of
the artwork. In this regard, a large body of pioneer artists have
practically explored designing algorithms to produce com-
putational abstract art that are composite of simple lines and
polygons. This includes Frieder Nake (Medien Kunst Netz
2018), Vera Molár (Vera Molár 2023), Leslie Mezei (Zen-
trum für Kunst und Medien 2023), A. Michael Noll, Manfred
Mohr and Georg Nees. Collectively, they represent the artists
putting the early concept of computer abstract art in practice.

Naturally, artists explores whether it’s possible to, in-
stead of directly designing an algorithm, use the rules that
control the possible search space of the algorithm that ac-
tually makes the art. However, since the algorithm is
hardly differentiable, gradients are not available or hard
to define. From an optimization point of view, this non-
differentiability makes it challenging to find an algorithm
since a wide range of optimization methods are gradient-
based. This resonates with the challenge of looking for a
better neural network architecture (Elsken, Metzen, and Hut-
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(c) The prompt for all camera/films is “A bright, vibrant, dynamic, spirited, vivid painting of a dog.”
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(d) The prompt for all camera/films is “A vivid, colorful bird”

Figure 2: Several examples of the abstract 3D art produced by our method, where the evolution process places triangles inside
the unit cube space (visualized by black frame) and sets triangles’ colors and transparencies, forming a spatial configuration. In
each example shown here, four cameras look at the unit cube space from four sides, although this is an arbitrary decision and
cameras can have different numbers and directions. The film from each camera, capturing the rendered images, is compared with
the prompt. It could be observed that our method is capable of making a 3D art, which follows the spatial abstract art style, that
looks like what humans can compose in natural language text.
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Figure 3: The architecture of our method, consisting of an
outer loop of evolution strategies (ES) to find parameters
leading to better fitness, and an inner, actual evaluation of
fitness. The builder builds spatial 3D objects that compose
semi-transparent triangles on the 3D space from parameters.
The renderer renders the 3D space from different cameras pro-
ducing corresponding images or “films” which are compared
with provided text prompts using Cosine loss between the
images and text prompts encoded by CLIP encoders. Such
a loss is treated as the fitness of the parameters given back
to ES. The user of our proposed method specifies the text
prompt and hyper-parameters governing the behavior of the
builder and the renderer, allowing expressing creativity.

ter 2019). To tackle it, previous works have explored lever-
aging evolution strategies (ES) in art generation, since ES
belongs to the category of black box optimization which
does not require differentiation. Such effort could han-
dles art forms ranging from simple ones (Johansson 2008;
Alteredqualia 2008) to more complex ones (Fogleman 2016;
Cason 2016; Paauw and Van den Berg 2019; Shahrabi 2020;
Tian and Ha 2022).

3D Rendering The development of Computer Graph-
ics (Foley et al. 1994; Shirley, Ashikhmin, and Marschner
2009) is largely associated (Watt 1993) with the constant
quest for better three dimension (3D) rendering. One of the
drives in 3D rendering is the development of game (Gregory
2018) which naturally calls for high quality rendering in
real-time (Akenine-Moller, Haines, and Hoffman 2019).

Regarding rendering technique, broadly speaking two
ways exist: first is rasterization (Shirley, Ashikhmin, and
Marschner 2009), where polygons representing 3D objects
are projected to pixels on 2D screen. It is fast, widely adopted,
and often good enough. Another is ray-tracing (Glassner
1989; Spencer and Murty 1962; Appel 1968; Whitted 2005),
where rays are traced back from camera, interacting with
the objects it encounters accordingly to the rendering equa-
tion (Kajiya 1986), all the way till the light source. It enables
a high degree of physical plausibility, but at the cost of high
computational requirements.

In the practice of 3D rendering engines, two paradigms
exist: One is retained mode graphics (Jin 2006) where the
application issues since to graphic libraries. This is the domi-
nating practice due to its efficiency. Another one is immediate
mode paradigm (Radich and Satran 2019) where the appli-
cation builds the scene and only issues drawing primitives
to the graphic libraries. It is less efficient, but allows more
flexibility and expression, which could helpful in creativity
settings.

Evolution Strategies (ES) (Beyer 2001; Beyer and Schwe-
fel 2002), as an optimization method, has been applied to
many problems. Inspired by biological evolution, its high-
level idea consists of iteratively changing parameters and
keeping the sets of parameters that are most fitting. At the
end of evolution the best, or the most fitting solutions remain.
A straightforward realization of this idea is iteratively per-
turbing parameters randomly and keeping ones only if the
change leads to better fitness. Unfortunately, it is often com-
putationally inefficient. Recent advances in ES have largely
improved the efficiency. For example, PGPE (Sehnke et al.
2010) proposes to estimate the gradients in linear time which
can be used by gradient-based optimizers like Adam (Kingma
and Ba 2014) and ClipUp (Toklu, Liskowski, and Srivas-
tava 2020). On the other hand, CMA-ES (Hansen 2000;
2006) estimates the covariance matrix of parameters, which
provides better performance using quadratic running time.

Notably, unlike gradient-based optimization, evolution
strategies do not require the optimized problem to be dif-
ferentiable, thus it could effectively serve as black-box opti-
mization solver where only the evaluation of fitness is needed.
This leads to a wide range of applications. For example, re-
cent advances in neural evolution (Such et al. 2017) allows
efficient optimization of neural networks, and EvoJAX (Tang,
Tian, and Ha 2022) fully leverages the hardware acceleration
for a wide range of evolution tasks.

3D Generative Models and Computational Creativity
One early way of generating creative 3D objects starts with
3D point cloud (Nguyen and Le 2013; Guo et al. 2020),
which consists of points with unit volume in 3D space. The
3D point cloud is easier to model, and is used in turn to gen-
erate the 3D shape by morphing the points (Mo et al. 2019;
Li et al. 2021). Recently, we have seen a surge of
high quality generative models that directly models 3D ob-
jects. Especially in producing concrete, volumetric 3D ob-
jects, works in the line of NeRF (Mildenhall et al. 2021;
Martin-Brualla et al. 2021) represents the whole scene by a
radiance field parameterized by the neural base models.

Research in 3D generation is not limited to the modal-
ity of 3D objects only. Multi-modal, text-to-image works
such as DALLE (Ramesh et al. 2022), Imagen (Saharia et
al. 2022) and Parti (Yu et al. 2022) allow creating high
quality images using text prompts as guidance. Based on
them, text-to-3D objects have become possible. For example,
DreamFields (Jain et al. 2022), DrameFusion (Poole et al.
2022), Magic 3D (Lin et al. 2022) and Imagen Video (Ho et
al. 2022) are capably for generating photo-realistic volumet-
ric 3D objects following the description given in text.

Beside generative models that model concrete and real-
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(d) “Walt Disney World” - 100 Triangles.

Figure 4: Our method generating with text prompts “Walt Disney World” with four cameras, with different numbers of triangles,
namely 10, 25, 50 and 100 respectively. It could be shown that our method leverages the budgets of triangles in the increasing
order of granularity, by first using triangles for general shape and then moving towards fine-grained details.
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(a) “A bright, vibrant, dynamic, spirited, vivid painting of a dog” - Run 1
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(b) “A bright, vibrant, dynamic, spirited, vivid painting of a dog” - Run 2

Figure 5: Our method generates with two independent runs, both with prompt “A bright, vibrant, dynamic, spirited, vivid
painting of a dog” from four directions. Different runs lead to equally plausible yet largely different 3D art. An artist user could
exercise discretion “in-the-loop” by choosing from different variants from these runs.

world 3D objects, similar problems have also been ap-
proached from a computational creativity point of view,
which emphasize the artistic creativity of the generated ob-
ject. Early work explores rule based generation (Broughton,
Tan, and Coates 1997; Coates, Broughton, and Jackson 1999)
where the combination of rules is evaluated by either en-
abling human-in-the-loop (Cook 2007) or parameterizing a
single formula (Chu 2021). Also, a recent work produces
wire art (Hsiao, Huang, and Chu 2018) resembling given
sketches by first generating vortexes and then connecting
them by leveraging 3D path finding algorithms. They are
probably closest to our work, but crucial differences exist:
As far as we know, we are the first work to address spatial,
abstract 3D generation with the expressionism from modern
neural based models.

Methodology
We show the overall architecture of our proposed method in
Figure 3. It contains two parts, the outer loop of evolution
strategies and the inner evaluation of 3D scene’s fitness.

The outer loop of evolution strategies (ES)
This is a black box optimization that suggests multiple
sets of parameters and adjusts them based on the fitness,
or how well each set of parameters are. At the end of
several steps of optimization, ES gives parameters lead-
ing to better fitness. We use CMA-ES (Hansen 2000;
2006), an algorithm that estimates the covariance matrix

of parameters, since it provides better performance than
common alternatives like PGPE (Sehnke et al. 2010) while
only incurring marginal increase of running time in our case.
Engineering-wise, we use EvoJAX implementation of CMA-
ES, which is based on JAX (Bradbury et al. 2018) and runs
easily on accelerators like GPUs.

The inner evaluation of 3D scene’s fitness
In our setting, the parameters literally parameterize the build-
ing and the rendering of 3D scenes. We first build the 3D
scene, and then render it from multiple, user-specified cam-
eras using a ray-tracing renderer engine. While the actual
spatial objects are parameterized by the parameters, how
the builder and the renderer interpret these parameters are
considered hyper-parameters that the artist users could con-
trol. Finally, the rendered images from each camera, or
“films” following photography terms, are compared with the
text prompts semantically, which is done by computing the
Cosine loss between images and texts encoded by CLIP en-
coders. The mean loss of all pairs of images and texts is given
back to the aforementioned evolution strategy for adjusting
the parameters accordingly.

Overall, the evaluation of 3D scenes through parameteriza-
tion is the main contribution we device to help artists express
creativity. We detail the key decisions as follows:

Parameterization Since our goal focuses on the compu-
tational creativity of spatial 3D art as motivated by the
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Figure 6: Our method generates with text prompts “Walt Disney World”, with a fixed transparency of 50% and with the default
setting of learnable transparency. While the fixed transparency setting allows more global control of the scene, the learnable one
provides great flexibility in how triangles are related to the space. More results from different transparency (0% and 80%) could
be found in supplementary materials online for comparison.

trend of abstract art in modern sculpture, we choose plac-
ing semi-transparent triangles in plastic material in the 3D
space. Concretely, each of N triangles is associated with 13
learnable parameters, namely the position of its three ver-
tices (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and the color and
transparency (R,G,B,A), thus making totally 13N param-
eters. It is possible to archive photo-realistic rendering of
these semi-transparent triangles with the help of a ray-tracing
renderer, because light rays may pass through and bounce
between them many times. Furthermore, doing so allowing
retain the possibility of reproducing a solution in the real
world. The choice of semi-transparent triangles is inspired
by a recent work on 2D abstract art (Tian and Ha 2022), but
going to 3D, as in our setting, makes our whole new pipeline
necessary since the technique and the optimization dynamics
are completely different.

Rendering In practice, for ray-tracing rendering we use
physic-based Mitsuba 3 renderer (Nimier-David et al. 2019).
For each triangle, the bidirectional scattering distribution
function (BSDF) for rendering is set as a mixture of BK7
Glass, a thin dielectric material, and a Lambertian, an ide-
ally diffuse material of corresponding R,G,B value, mixed
with ratio A. Besides physically correct rendering, Mitsuba
3 also allows GPU-powered paralleling sampling, which
largely accelerates the ray-tracing rendering. For the sake
of completeness, we note that Mitsuba 3 is also capable of
sampling-based gradient estimation, but we do not leverage

such capacity and leave study of that behavior as an orthogo-
nal research direction for future study.

Evaluation As we expect the pipeline to produce a scene
that, when rendered from different cameras (we call what
a camera produces “films”), looks like corresponding text
semantically, We measure it using CLIP, which provides an
image and a text encoder that projects images and text into a
shared, comparable latent space with Cosine distance. Note
that with multiple pairs of camera and text, we could make
the produced 3D object look like (or different) from different
directions. In doing so, each film is encoded and compared
with corresponding encoded text, and the means of Cosine
distance of all such pairs are used as fitness, which is given
back to the evolution strategies.

Computation Platform
Since both the rendering and the evolution strategies we use
are fully run-able on GPU, the computation is fast and in our
experience can be tens of times faster than on CPU, thus fully
leveraging the modern hardware accelerators.

Experiments
In this section we showcase our method with several ex-
periments. In Figure 2, we show several examples of the
evolved 3D art produced by our method, each with 1, 200
steps of evolution and a population of 128 using CMA-ES.
As shown here, our method demonstrates that a wide range
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Walt Disney World an annoyed cat

Figure 7: Our method generates with different text prompts at cameras. The text prompt for camera 1 and 3 is “Walt Disney
World” and for camera 2 and 4 is “an annoyed cat”. Our method produces one 3D art, and successfully allows it to look
differently from different angles.

of text prompts can be handled by our method, producing
spatial, abstract art that is both novel and consistent with
human interpretation. Even given the abstract nature defined
by the scene, our method could still handle both the spatial
shape (first two examples) and the color (last two examples).

In the rest of this section, we investigate how turning sev-
eral important hyper-parameters could impact the finally gen-
erated 3D art, showing the dynamics of our method which
could be served as a guidance for the artist users.

Different Number of Triangles The number of triangles
could be used as a kind of “budget” that our method used to
allocate in occupying the 3D space. In Figure 4, we show
our method generating 3D artwork with 10, 25, 50 and 100
triangles, respectively. Our method thus places triangles in
the increasing order of granularity, where the general outline
is first emphasized and details are then filled. Note that the
number of parameters increases in proportion to the number
of triangles, requiring more computation time in rendering
and optimization. Thus, this is a balance that artist users
should decide.

Different Runs of the Same Configuration One important
aspect of computational creativity is the ability to produce
variants of the art given the same instruction. Such a property
not only allows artists to be “in-the-loop” to choose from a
wide range of variants, but also shows the capacity of the
generative model. In Figure 5, we show two configurations,
each with two independent runs. It is shown that different
runs lead to equally plausible yet largely different 3D art. In
doing so, our method could support artists “in-the-loop” of
the creativity process.

Fixed v.s. Learnable Transparency Unlike 2D art, in 3D
art the transparency matters a lot, due to the effects such as
reflection and optical diffusion. This is especially true in the
spatial setting as we focus on. In Figure 6, we demonstrate
several settings of transparency, including the fixed trans-
parency and the default setting of learnable transparency. It
shows that while fixed transparency allows a more consis-

tent global outlook, it nonetheless limits the expression by
forcing large and small triangles contributing the same to the
images. In contrast, learnable transparency gives our method
flexibility in how the triangles are related to the 3D space.

Different Text Prompts at Different Cameras While in
many examples we show the same text prompt for cameras,
this is completely not a requirement imposed by our method.
On the contrary, our method allows pairs of texts and cameras
in an arbitrary combination. Such a capacity allows a wider
range of creativity from users to, for example, generate a 3D
art that looks differently from different angles. In Figure 7 we
demonstrate one such case, where our method generates 3D
art that looks like “Walt Disney World” from two directions
but “an annoyed cat” from the other two directions, even
these views are of the same, single 3D art. We argue that
our method is the first to be capable of helping artists in such
a creative process that previously requires lots of manual
work (Hsiao, Huang, and Chu 2018).

Conclusion
In this work we address the problem that is previously not
studied — generating 3D, abstract, and spatial art that is
semantically aligned with human interpretation. In doing
so, we propose to leverage evolution strategies (ES) with
ray-tracing rendering of parameterized 3D scenes, along with
CLIP method for measuring the semantic similarity. We
demonstrate that our approach is capable of producing 3D
arts through several experiments, and provides the flexibility
for artists or users to fine-tune for the desired result.

Nonetheless, our proposed method is best suited as a call
for further future study in computational approaches in 3D
art. For example, it remains unclear whether optimization
using differentiability of the renderer would lead to a differ-
ent dynamic and thus art style. Also, the designing of the
parameterized scene is a time-consuming one requiring the
extensive knowledge of 3D rendering and optimization, so
whether it would be improved through the (semi-)automation
process should be studied too.
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